984 research outputs found

    VLA Observations of Candidate Supernova Remnants from the Clark Lake 30.9 MHz Galactic Plane Survey

    Get PDF
    We report the results of 1464 MHz continuum VLA observations of eight fields containing unidentified small-diameter objects associated with candidate supernova remnants from the Clark Lake 30.9 MHz galactic plane survey. The observations were made in the C configuration, giving a resolution of -12-20 arcsec, and a sensitivity of typically <0.5 mJy per beam. Polarization measurements were made as well. One of the 30.9 MHz candidates, G41.4+ 1.2, appears to be confirmed as a supernova remnant by our observations. Of the remaining seven fields observed, three were found to contain small-diameter objects which met some of the criteria for nonthermal origin, but will require further study to evaluate whether they are associated with the candidate supernova remnants. Two of the fields were found to contain groups of unresolved objects consistent with expectations for extragalactic background sources. In these cases the 30.9 MHz observations, which could not resolve the individual sources but would view them as a single extended source, may have mistakenly identified them as possible supernova remnants. Finally, two fields contained bright H II region

    Experimental Limit on the Cosmic Diffuse Ultra-high Energy Neutrino Flux

    Full text link
    We report results from 120 hours of livetime with the Goldstone Lunar Ultra-high energy neutrino Experiment (GLUE). The experiment searches for <10 ns microwave pulses from the lunar regolith, appearing in coincidence at two large radio telescopes separated by 22 km and linked by optical fiber. Such pulses would arise from subsurface electromagnetic cascades induced by interactions of >= 100 EeV neutrinos in the lunar regolith. No candidates are yet seen, and the implied limits constrain several current models for ultra-high energy neutrino fluxes.Comment: 4 pages, 4 figures, revtex4 style. New intro section, Fig. 2, Fig 4; in final PRL revie

    Observation of the Askaryan Effect: Coherent Microwave Cherenkov Emission from Charge Asymmetry in High Energy Particle Cascades

    Get PDF
    We present the first direct experimental evidence for the charge excess in high energy particle showers predicted nearly 40 years ago by Askaryan. We directed bremsstrahlung photons from picosecond pulses of 28.5 GeV electrons at the SLAC Final Focus Test Beam facility into a 3.5 ton silica sand target, producing electromagnetic showers several meters long. A series of antennas spanning 0.3 to 6 GHz were used to detect strong, sub-nanosecond radio frequency pulses produced whenever a shower was present. The measured electric field strengths are consistent with a completely coherent radiation process. The pulses show 100% linear polarization, consistent with the expectations of Cherenkov radiation. The field strength versus depth closely follows the expected particle number density profile of the cascade, consistent with emission from excess charge distributed along the shower. These measurements therefore provide strong support for experiments designed to detect high energy cosmic rays and neutrinos via coherent radio emission from their cascades.Comment: 10 pages, 4 figures. Submitted to Phys. Rev. Let

    Picosecond timing of Microwave Cherenkov Impulses from High-Energy Particle Showers Using Dielectric-loaded Waveguides

    Full text link
    We report on the first measurements of coherent microwave impulses from high-energy particle-induced electromagnetic showers generated via the Askaryan effect in a dielectric-loaded waveguide. Bunches of 12.16 GeV electrons with total bunch energy of ∼103−104\sim 10^3-10^4 GeV were pre-showered in tungsten, and then measured with WR-51 rectangular (12.6 mm by 6.3 mm) waveguide elements loaded with solid alumina (Al2O3Al_2 O_3) bars. In the 5-8 GHz TE10TE_{10} single-mode band determined by the presence of the dielectric in the waveguide, we observed band-limited microwave impulses with amplitude proportional to bunch energy. Signals in different waveguide elements measuring the same shower were used to estimate relative time differences with 2.3 picosecond precision. These measurements establish a basis for using arrays of alumina-loaded waveguide elements, with exceptional radiation hardness, as very high precision timing planes for high-energy physics detectors.Comment: 16 pages, 15 figure

    Search for gamma-rays above 400 GeV from Geminga

    Get PDF
    Observations of Geminga made at the Whipple Observatory using the atmospheric Cherenkov technique during the moonless periods of November 1983 to February 1984 and November 1984 till February 1985 were examined for evidence for the emission of gamma rays with energy in excess of approx 400 GeV. Evidence of either a steady flux or a flux pulsed with a period near 60 seconds were studied. In neither case was any significant effect observed, enabling the establishment 3 of sigma upper limits of 5.5 x 10 to the -11th power photons/sq cm/s and 2.0 x 10 to the -11th power photons/sq cm/s for the steady and pulsed emission respectively. The limit to the pulsed flux is approximately a factor of six below that predicted
    • …
    corecore